
Arbiter: Bridging the Static and Dynamic Divide in
Vulnerability Discovery on Binary Programs

Jayakrishna Vadayath¹, Moritz Eckert2, Kyle Zeng¹, Nicolaas Weideman3,
Gokulkrishna Praveen Menon¹, Yanick Fratantonio4, Davide Balzarotti2, Adam Doupé¹,

Tiffany Bao¹, Ruoyu Wang¹, Christophe Hauser3, Yan Shoshitaishvili¹

¹Arizona State University
²EURECOM

3University of Southern California
4Cisco Systems Inc

Dynamic AnalysisStatic Analysis

Precision

Reproducibility

Fidelity

Sc
al

ab
ili

ty

Ap
pl

ic
ab

ili
ty

Fo
rm

al
ity

3

Memory
corruption

Sanitizer

Fuzzing

Intuition
The properties of a vulnerability convey requirements on analysis
techniques.

Vulnerability detection is a vulnerability-driven process.

4

5

Pros and Cons

Static
• High scalability

• High coverage

• More False Positives

• Limited scalability

• Limited coverage

• Fewer False Positives

Dynamic

Vulnerability Properties

We identified three properties that enable the composited use of
analyses to achieve scalability and precision.
P1: Data-flow Sensitive Vulnerabilities.

P2: Easily Identifiable Sources or Sinks.

P3: Control-flow-determined Aliasing.

6

DFSV

EISS

CFDA

7

The Analyses

Allows us to use the high scalability and high coverage of static
analysis to identify candidate paths.

Provides high precision by enabling the use of Under-Constrained
Symbolic Execution (UCSE) to filter out false-positives.

Supports an adaptive augmentation of context sensitivity in UCSE,
providing a configurable trade-off between precision and
soundness.

DF
SV

EI
SS

CF
DA

Arbiter

8

Property-Compliant Vulnerabilities

9

CWE ID Description CVE Example

CWE-131 Incorrect Calculation of Buffer Size CVE-2018-18311

CWE-134 Use of Externally-Controlled Format String CVE-2012-0809

CWE-252 Unchecked Return Value CVE-2013-4559

CWE-337 Predictable Seed in Pseudo-Random Number Generator CVE-2020-13784

Evaluation
• Evaluated on 76k binaries, generated a total of 1130 alerts.

• 661 True Positives, 410 False Positives.

10

Class Alerts True Positives False Positives Untriage-able

CWE-131 436 194 195 47

CWE-134 158 12 142 4

CWE-252 159 83 71 5

CWE-337 377 372 2 3

Validation of Static Analysis
Evaluation vs AFL
We triggered 25 bugs discovered by Arbiter. Of those:

• Only 7 were in standalone binaries.

• AFL could fuzz 5 (2 binaries were too complex).

• AFL only found 3 bugs in 24 hours.

11

Case Study: OCaml
In triaging Arbiter's CWE-131 reports, we kept finding identical cases
of buggy heap management code.
Looking into the corresponding source code, there were no bugs.
All of the programs were OCaml...
The bug was introduced at compile time by the OCaml compiler,
affected all 32-bit OCaml programs.

12

Evaluation on The Juliet Dataset

13

Case Study: The Juliet Dataset
New Bugs!
Arbiter found 190 previously-unknown bugs in Juliet, missed by all
existing work!
The Cause?
Source code analyzer modeling of the abs() C function is
(apparently) wrong.

14

0xFFFFFFFF
0xFFFFFFFF

1

1

Summary
• Vulnerability detection is a vulnerability-driven process.

• Three vulnerability properties enable hybrid analysis, which
improves scalability and precision.

• Evaluation on 76k binaries shows ~60% true positive rate.

15

Thank you!

 https://github.com/jkrshnmenon/arbiter

16

@jkrshnmenon

jkrshnmenon@asu.edu

jkrshnmenon

Jayakrishna (Jay) Vadayath

Questions?

https://github.com/jkrshnmenon/arbiter

Backup slides

17

Digging In

The pattern: Arbiter casts an initial wide net, followed by alert
reductions up to 10x per step.
* Final alerts can be higher than prior steps due to paths that are
traced to program entry point during earlier false positive
reduction steps.

Static
Detections

Context-Insensitive
UCSE

Context-Sensitive
UCSE #1

Context-Sensitive
UCSE #2

Context-Sensitive
UCSE #3

Final
Alerts*

CWE-131 692,501 31,436 3,310 1,037 351 436

CWE-134 429,711 39,305 4,894 489 222 158

CWE-252 55,388 4,413 942 126 107 159

CWE-337 4,641 2,741 633 92 45 377

