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Abstract
In spite of their effectiveness in the context of vulnerability
discovery, current state-of-the-art binary program analysis ap-
proaches are limited by inherent trade-offs between accuracy
and scalability. In this paper, we identify a set of vulnerability
properties that can aid both static and dynamic vulnerability
detection techniques, improving the precision of the former
and the scalability of the latter. By carefully integrating static
and dynamic techniques, we detect vulnerabilities that exhibit
these properties in real-world programs at a large scale.

We implemented our technique, making several advance-
ments in the analysis of binary code, and created a prototype
called ARBITER. We demonstrate the effectiveness of our
approach with a large-scale evaluation on four common vul-
nerability classes: CWE-131 (Incorrect Calculation of Buffer
Size), CWE-252 (Unchecked Return Value), CWE-134 (Un-
controlled Format String), and CWE-337 (Predictable Seed
in Pseudo-Random Number Generator). We evaluated our
approach on more than 76,516 x86-64 binaries in the Ubuntu
repositories and discovered new vulnerabilities, including a
flaw inserted into programs during compilation.

1 Introduction

In spite of the constant evolution of security mechanisms
and safeguards that were introduced in compilers, operating
systems, and development environments, software vulnera-
bilities continue to be discovered. As a partial mitigation for
this, the process of post-development analysis and testing has
become standard practice in assessing the security of standard
libraries, OS components, and embedded firmware alike.

In recent years, the state of the art in binary vulnerabil-
ity discovery advanced with a panoply of new dynamic ap-
proaches, with a focus on fuzzing techniques. While this
emphasis on fuzzing has led to dramatic improvements over
existing techniques, and, therefore, represents a valuable path
forward, it has come at a cost of investment in static analysis.
This trade-off has downsides: “deep bugs”, i.e., bugs “buried”
deep within a program’s possible execution paths or requiring
intricate constraints tend to challenge dynamic techniques due
to the dynamic coverage problem. Another dynamic approach,
dynamic symbolic execution (DSE), is commonly used to ex-
haust execution paths within a small region of binary code and

look for property violations. DSE’s high-fidelity execution is
both a bless and a curse: it also suffers from the dynamic cov-
erage problem due to poor scalability on real-world binaries.

While revisiting static analysis would allow researchers to
sidestep the dynamic coverage problem, current static anal-
ysis techniques on binary code lack the precision required
to effectively identify vulnerabilities without overwhelming
human analysts with false positives.

Vulnerability discovery techniques are most useful if they
can be applied on a wide spectrum of programs in a fully au-
tomated manner without introducing overwhelming numbers
of false positives. A hybrid approach—taking the best from
both static and dynamic worlds—with high precision while
maintaining high scalability, would be a powerful tool.

In this paper, we describe our effort to build such a tool,
inspired by the evolution of fuzzing research. Because fuzzers
must execute the target program, individual techniques are
tailored to the analysis of individual program classes, such
as kernel modules [20, 43] or language runtimes [19]. We
realized that an analog to this concept in static analysis is
the tailoring of static analyses to specific vulnerability types.
By leveraging this insight, we identified a set of vulnerability
properties that allow us to maintain, at the same time, a scal-
able (albeit imprecise) static detection and a precise (albeit
less scalable) dynamic filtering of false positives. ARBITER is
our hybrid analysis technique that can scalably analyze large
amounts of binary code while maintaining high precision
even in the case of complex vulnerabilities such as intricate
occurrences of integer overflows or privilege escalation bugs.
ARBITER is expandable and supports the specification of
different vulnerability classes that exhibit the properties we
identified, with new vulnerability class specifications requir-
ing on the order of 75 lines of code. We present examples for
four cases: CWE-131 (Incorrect Calculation of Buffer Size),
CWE-252 (Unchecked Return Value), CWE-337 (Predictable
Seed in PRNG), and CWE-134 (Uncontrolled Format String).

To achieve ARBITER’s hybrid analysis, we introduce novel
improvements to, and create novel combinations of, several
binary-level analysis techniques, culminating in an adaptive
false positive filtering step that uses static and dynamic tech-
niques for a configurable trade-off between precision and per-
formance. We also show how previous approaches—including
those that target specific categories of bugs—are all affected
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by limitations that hinder their precision and scalability. In
fact, while one may think that detecting these vulnerabilities
is trivial, we show that they are very challenging to identify in
complex, real-world scenarios, and non-trivial even on “toy”
code. For example, in an experiment on the synthetic Juliet
dataset, ARBITER identified, and we manually confirmed, 190
vulnerabilities in testcases that were erroneously considered
safe by the ground truth and former analyses.

We evaluate ARBITER on 76,516 binary programs, which
are collected from x86-64 Ubuntu 18.04 software repositories.
We also demonstrate its precision by analyzing the 436 CWE-
131 alerts that ARBITER raises in 366 programs, the 159 CWE-
252 alerts across 126 programs, the 158 CWE-134 alerts
across 119 programs, and the 377 CWE-337 alerts across 370
programs. These results demonstrate that ARBITER scales
to real-world scenarios, and can detect bugs, including 0-day
vulnerabilities, in real-world software. For example, we found
and reported an exploitable vulnerability (CVE-2018-18311)
in the Perl runtime and a heap error that affects all 32-bit
programs compiled by the OCaml compiler.
Contributions. Our paper makes the following contributions:

• We identify a specific set of vulnerability properties that
allow for the effective combination of static analysis and
dynamic analysis, especially DSE, to achieve precision
while maintaining scalability.

• We develop ARBITER, a framework that combines static
analysis and DSE to identify bugs. ARBITER operates
without any requirement for source code or build sys-
tems, and includes novel improvements to both static
and dynamic techniques. Creating specifications of new
vulnerability classes in ARBITER is inexpensive.

• We perform a large-scale evaluation of ARBITER, ana-
lyzing 76,516 binaries for four bug classes.

To support open research, ARBITER and data is available1.

2 Related Work and Motivations

Table 1 lists six features that, from our view, are critical for
real-world adoption of a vulnerability discovery technique.
While much research focuses on vulnerability discovery, none
of them provides an automated, scalable, and generic solution,
which is the goal of this research. We first discuss research
work that attempted (and failed) to achieve our research goal,
then we present our observations and insights that led to the
birth of ARBITER.

2.1 Vulnerability Discovery Techniques
We group existing vulnerability discovery techniques (sum-
marized in Table 1) that are closely related to ARBITER along
three main areas and discuss their advantages and limitations,
which prevented them from being widely adopted.

1https://github.com/jkrshnmenon/arbiter

Tool No Source

High Scalability

Low False
Positiv

e

No Harness

Symbolic
Reasoning

Generic
Vulns

Vanguard 7 3 7 3 7 7
Joern 7 3 7 3 7 3
CodeQL 7 3 7 3 7 3
Infer 7 3 7 3 7 3
AFL 3 7 3 7 7 3
Smartfuzz 3 7 3 7 3 7
DIODE 3 7 3 7 3 7
Statsym 3 7 3 7 3 3
IntScope 3 3 3 3 3 7
INDIO 3 3 3 3 3 7
ARBITER 3 3 3 3 3 32

Table 1: Comparison between ARBITER and related tools in terms of their ca-
pabilities. We note whether the tool requires source code, has high scalability
through the use of static techniques, has a low false positive rate through the
use of dynamic techniques, requires a harness to execute the code under test,
has symbolic reasoning capabilities, and supports generic vulnerability types.

White-box Static Vulnerability Analysis. Many techniques
exist to find vulnerabilities in source code. However, there are
fundamental challenges that differentiate static analysis from
solutions that focus on binaries. Therefore, we only discuss
approaches that are more closely related to ARBITER.

Graph-based vulnerability discovery approaches, such as
Joern, Chucky, and CodeQL, rely on a number of carefully
crafted queries that express patterns over a graph represen-
tation of the program source code [35, 44, 46]. Their main
goal is to reduce the scope for a human analyst to only the
potentially vulnerable parts of the code. As such, they do not
try to be fully automated nor precise.

Some static tools are designed to find the same types of er-
rors as ARBITER. For example, Vanguard [40] tries to identify
missing security-sensitive checks by combining static code
analysis and taint analysis. On top of requiring source code,
Vanguard explicitly focuses on checks of operations directly
affected by user input, and could not detect, among others, the
failed dropped privilege vulnerability (shown in Section 3.2).

Dynamic Analysis on Binaries. There is a rich literature
on the use of static analysis and DSE to drive the test case
generation in a fuzzer [1, 2, 7, 27, 30, 37, 41, 49, 50].

SmartFuzz combines fuzzing and DSE to identify integer
bugs in x86 Linux programs [25]. In addition to generating
new test cases by using DSE, SmartFuzz uses a constraint
solver to further identify assertion errors in integer operations,
such as arithmetic overflows, non-value preserving width con-
versions, and dangerous signed/unsigned conversions. How-
ever, similar to other dynamic techniques, the scalability of
SmartFuzz is severely limited by the symbolic-supported
fuzzy exploration performed from the program entry point.
Furthermore, SmartFuzz is limited to integer bugs, and it is
unclear how much effort is required to support detection of
more bug types.

2ARBITER can identify different types of vulnerabilities provided that
they satisfy certain properties as described in Section 3.
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Other solutions adopt taint analysis or DSE to uncover
vulnerabilities in applications, e.g., Statsym [48], which uses
statistics-guided DSE, and DIODE [39], which uses taint anal-
ysis to identify code locations that allocate memory and DSE
to check if the integer argument of these allocation is vul-
nerable to overflow. While these solutions can find some
vulnerabilities that ARBITER finds, both approaches require
test-cases that exercise vulnerable points in target programs.
In practice, this often requires an extensive fuzzing campaign.

Binary Static Analysis enhanced by DSE. Combining
static analysis and DSE to verify results and reduce false
positives is not novel. INDIO [51] is a pattern-matching so-
lution that identifies and ranks code locations for potential
vulnerabilities, then uses DSE with path pruning to validate
the vulnerability. INDIO always starts from the program’s
entry point when performing DSE, which greatly limits its
scalability.

IntScope [42] uses path-sensitive data-flow analysis to iden-
tify integer overflows, and taint analysis followed by DSE to
verify that the overflow constraints are satisfied. The combina-
tion of static analysis and DSE and the ability to detect integer
overflows with a low number of false positives makes these
approaches similar to ARBITER. However, these techniques
are tailored to a specific class of bugs, while integer overflow
is only one example of what ARBITER is designed to detect.

2.2 Binary Analysis: Static vs. Dynamic

Table 2 provides a qualitative comparison of common vulner-
ability discovery techniques on binary code. Generally, dy-
namic techniques and static techniques have different focuses:
The former sacrifices code coverage (due to the dynamic cov-
erage problem, which leads to a high number of missed bugs)
and heavily relies on human effort for harnessing and deploy-
ment, while the latter can easily achieve high code coverage
at the cost of high false positives. Resource requirements,
scaling up, filtering false positives from reported vulnerabili-
ties, and human effort in modeling environment or creating
harnesses all directly translate to the essential cost of applying
these techniques. This cost contributes to the reluctance of
applying these techniques on a wide spectrum of binaries.

Revisiting Table 2 reveals an interesting gap among these
vulnerability discovery techniques: The lack of economic,
scalable, and low-human-inference techniques with low false
positive and false negative rates. Specifically, the absence of
such techniques dictates that the use of modern vulnerability
discovery techniques must be combined with high cost, in
the form of either significant compute or human effort. This
motivates our design of ARBITER, a low-cost vulnerability
discovery technique on binary code for a set of vulnerability
classes that are compliant with certain properties.

3 Vulnerability-Targeted Static Analysis

Our key insight is that, by carefully choosing vulnerabili-
ties with properties that can be leveraged during both static
and dynamic analysis, we can properly scope a vulnerabil-
ity detection approach to combine these two paradigms and
achieve high precision while maintaining scalability. To this
end, we identified a set of vulnerability “properties” that lend
themselves well to static analysis while also providing op-
portunities for integrating dynamic techniques to improve
precision. We identified three such properties:

(P1) Data-flow sensitive vulnerabilities. Vulnerabilities
that are data-flow sensitive can be discovered by reasoning
about data flows between input sources and vulnerability
sinks. Note that the scope of data-flow sensitive vulnerabil-
ities is strictly larger than taint-style vulnerabilities, which
only includes vulnerabilities that are caused by missing san-
itization on tainted user input [45]. These are approachable
by static techniques, with typical precision limitations, but
also allow for additional dynamic verification of data flows
to increase precision.
(P2) Easily identifiable sources or sinks. During vulnerabil-
ity discovery, vulnerability sources determine the beginning
of data-flow tracking, and vulnerability sinks determine the
termination of data-flow tracking. Identifying sources and
sinks for many vulnerability classes requires precise alias-
ing information on an entire binary, which is known to be
prohibitively expensive and unscalable. For example, if the
source is defined as “any data read from file /tmp/secret,”
identifying all input sources will require correctly analyzing
the parameters of every function and syscall that opens a file,
and the propagation of file pointers, file descriptors, and rele-
vant data structures. On the contrary, some have sources or
sinks that can be identified through examining artifacts that a
computationally cheap and scalable analysis generates, such
as a CFG. An example of such a sink is “all call sites to the
library function malloc().”

With this style of sources and sinks, slicing a program from
a source to a sink is a well-studied static technique. Though
this property is generally considered in the context of static
analysis, these slices can be processed by dynamic techniques.
This allows for dynamic techniques, such as DSE, to reason
about over-approximations in the slicing process, fix such
over-approximations, and improve overall system precision.
(P3) Control-flow-determined aliasing. Tracking data-
flows almost always involves recovering aliasing information,
which requires an expensive, full-binary analysis on the target.
However, we observe that the data flows that many vulner-
abilities incorporate do not involve pointer dereferencing at
all, or when they do, the pointer can always be resolved to
one object that is determined by the control flow (e.g., local
variables accessed through the stack pointer). We deem such
cases of aliasing as control-flow-determined, making this a
prerequisite of our targeted vulnerabilities.
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Technique Genre FP FN Vuln. types Coverage Resource Human effort Scalability Examples

Fuzzing dynamic no high crash-introducing very low high harnessing, deployment high [1, 2, 7, 10, 11, 30, 37, 50]
Taint tracking dynamic no high generic very low high harnessing, env., rules high [26, 34]

DSE dynamic yes high generic low very high harnessing, env., rules low [34, 38]
DSE-assis. fuzzing dynamic no high crash-introducing low high harnessing, env. medium [5, 6, 16, 17, 27, 41, 49]
Graph-based tech. static high medium generic high low env., rules, fp high [28, 44, 45]
Taint-based tech. static high medium generic high low env., rules, fp high [8, 18, 31, 32]

ARBITER hybrid low low specific high low rules high

Table 2: A qualitative comparison of the strengths and weaknesses of common vulnerability discovery techniques on binary code. “DSE-assis. fuzzing” refers
DSE-assisted fuzzing techniques; “Graph-based tech.” refers to static analysis techniques that are based on program property graphs; “Taint-based tech.” refers to
taint-based static analysis techniques. The “high,” “medium,” and “low” assessment are empirical and illustrative. “Generic” means users can develop violation
detection rules for each vulnerability type to discover. “Env.” refers to the effort of modeling environment (developing taint propagation rules for library functions
in taint tracking, or developing function summaries for library functions in DSE). “FP” refers to false-positive reduction effort, which is mostly done by humans.

From the static side, this property allows ARBITER to adap-
tively step forward or back on a CFG without having to worry
about imprecisions caused by incorrect aliasing information.
From the dynamic side, it greatly simplifies aliasing problems
resulting from the lack of initialization of the dynamic state.

Choosing the right techniques. The three key properties pre-
viously described allow ARBITER to yield a powerful integra-
tion of static and dynamic techniques that focus on a subset
of common vulnerability classes while retaining sufficient
generality to adapt to a range of real-world vulnerabilities.
Specifically, we use the static techniques of data flow recovery
and program slicing (more details in Section 5). Our choice
of dynamic techniques is informed by the vulnerability prop-
erties. P1 defines the scope of vulnerabilities that ARBITER
can support and suggests the use of DSE, which can reason
about complex value relationships in data flows. P2 defines
a pre-condition to achieve high scalability by providing an
opportunity to execute small slices of programs. This poses a
challenge: These slices typically lack state information nec-
essary for a dynamic analysis. Luckily, P3, and the resulting
ability to ignore much of the aliasing problem, allows us to ef-
fectively apply a DSE technique known as Under-Constrained
Symbolic Execution (UCSE). Without P3, ARBITER would
need to either compute aliasing during static analysis (which
is an undecidable problem) or accept high false positives
caused by conservative aliasing. Our dynamic techniques are
discussed in Section 6.

Thus, ARBITER can reason about vulnerabilities that com-
ply with these properties in both static and dynamic-symbolic
contexts. We call these vulnerabilities Property-Compliant
(PC) Vulnerabilities. To give the reader a better perspective
on the concrete scope of our approach, we represent candidate
Common Weakness Enumeration (CWE) entries which con-
tain PC-type vulnerabilities in Table 3, along with example
CVE entries and suggested sources and sinks. In the remain-
der of this paper, we will focus on CWEs: 131, 134, 252 and
337: “Incorrect Calculation of Buffer Size,” “Uncontrolled
Format String,” “Unchecked Return Value,” and “Predictable
Seed in Pseudo-Random Number Generator.”

3.1 CWE-131: Allocation Site Overflows

Integer overflows at allocation sites are a serious class of
vulnerabilities that can provide attackers with powerful prim-
itives. Such vulnerabilities can cause programs to allocate
blocks of memory smaller than the amount of data they are
supposed to hold. When data is copied into this memory, the
resulting out-of-bound memory accesses can potentially be
exploited by attackers to gain code execution.

Occurrence. We observed this as a common pattern in mod-
ern software where a custom wrapper function is invoked
to allocate memory using common libc functions such as
malloc, realloc, or calloc. The wrapper function usually
requires an argument that denotes the number of bytes to be
allocated. Before invoking functions to allocate the requested
number of bytes, that number might be increased to accom-
modate application-specific metadata. When the requested
size is very large, this increase can lead to an integer overflow,
causing a too-small allocation to be requested.
Static sources and sinks. Naturally, the sinks for this CWE
are allocation functions (malloc, calloc, realloc). The
sources, in turn, are arguments to the wrapper function that
calls the identified sinks.
Static data flow. The data flow specification for this vulnera-
bility is simple: we can statically recover all flows from the
sources to the sinks, and then reason about them symbolically.
Dynamic symbolic constraints. Our dynamic constraints for
CWE-131 ensure that allocation size calculations do not over-
flow in wrapper functions. The constraints, expressed mathe-
matically here (but procedurally in ARBITER), are as follows:

Let uint : e→ uint denote the evaluation of an expression
as an unsigned integer value. Given an arithmetic expression
e passed as argument to a memory allocation function f , and
its individual terms {e1, · · · ,en}. A vulnerability exists iff
∃ei ∈ {e1, · · · ,en}|uint(ei)> uint(e).

This constraint is based on the assumption that a function
that contains the allocation site never decreases the required
length of the memory block3.

3Interestingly, in our large-scale evaluation, we found that this assumption
does not always hold, which leads to false positive detections of vulnerabili-
ties. We discuss these cases, and their impact on our results, in Section 8.1.1.
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CWE-ID Description P1 P2 P3 Source Sink CVE

CWE-78 Improper Neutralization of Special Elements used in an OS
Command (“OS Command Injection”)

3 3 3 1st arg. of sprintf() 1st arg. of system() CVE-2016-1334

CWE-190 Integer Overflow or Wraparound 3 3 3 arithmetic op. on return
values of sizeof()

size_t arg. of * CVE-2017-1000121

CWE-131 Incorrect Calculation of Buffer Size 3 3 3 arithmetic operations arg. of malloc() CVE-2018-18311
CWE-134 Controlled Format String 3 3 3 * printf() and alike CVE-2012-0809
CWE-252 Unchecked Return Value 3 3 3 return values of setuid() * CVE-2013-4559
CWE-337 Predictable Seed in Pseudo-Random Number Generator 3 3 3 return values of time() arg. to srand() CVE-2020-13784
CWE-676 Use of Potentially Dangerous Function 3 3 3 * 1st arg. of strcpy() CVE-2011-0712
CWE-120 Buffer Copy without Checking Size of Input (“Classic Buffer

Overflow”)
3 3 3 2nd arg. of read() 1st arg. of memcpy() CVE-2003-0595

Table 3: Example candidate vulnerability classes that ARBITER supports with sample sources and sinks. The green background indicates a deterministically
matched property. The yellow background indicates a conditionally matched property. P1 refers to data-flow vulnerabilities, P2 refers to easily identifiable
sources and sinks and P3 refers to control-flow-determined aliasing. In this paper, we specifically explore the automatic detection CWE’s 131, 134, 252 and 337.

3.2 CWE-252: Unchecked Return Values

Vulnerabilities can occur if a program does not properly han-
dle an error. These vulnerabilities can provide an attacker
with a range of capabilities from Denial-Of-Service to Privi-
lege Escalation [21]. A typical attack vector is a vulnerability
in a program that tries to drop privileges to an unprivileged
user after a privileged initialization phase. If the return value
from the privilege reduction (i.e., setuid) is not checked, the
program may be vulnerable.

Occurrence. These flaws can occur whenever developers
omit return value checks for code that can, but almost never
does, fail. Aside from setuid and similar functions, this
includes frequently used functionality such as mmap, open,
close, and so on.

Static sources and sinks. We decided to focus on sys-
tem calls that have clear security implications, resulting
in the following list of sources: access, chdir, chown,
chroot, mmap, prctl, setgid, setsid, setpgid, setreuid,
setregid, setresuid, setresgid, setrlimit, and stat.
This list is trivially expandable. For sinks, we used the return
block of the function (in the binary being analyzed) that is
calling the system call’s corresponding libc API.

Static data flow. To catch cases where the return value was
discarded (a common cause of this vulnerability), the data
flow specification must capture all flows of the API return
value from the source, including those where the return value
of the caller did not depend on the system call return value.

Dynamic symbolic constraints. The return value of our cho-
sen APIs can either be −1 for error, or something else, for
success. ARBITER’s ability to reason symbolically allows us
to craft a powerful vulnerability constraint for this applica-
tion: If, at the end of the function, DSE identifies states where
the return value from the API call can be either success or
failure, then there was no check to constrain the value, and an
unchecked return value vulnerability exists.

3.3 CWE-134: Uncontrolled Format String

Formatting functions, such as printf(), determine the num-
ber of arguments at runtime based on a format string. This
format string, as a required function argument, contains both
ordinary characters (printed verbatim) and format directives,
which specify arguments to be printed, copied, or modified.
If a user can control the format directives, they can often use
this capability to disclose or overwrite memory values and
compromise the security of the program.

Occurrence. These flaws can potentially occur whenever
a format string is not constant. This can be the result of
lazy programming practices (i.e., printf(name); instead
of printf("%s", name);) or of insufficient filtering in the
dynamic construction of format strings. The former frequently
occurs in lesser-exercised paths (especially error logging).
Static sources and sinks. We used the set of libc func-
tions that would be affected by format string vulnerabilities
as sinks. These are printf, fprintf, asprintf, dprintf,
sprintf, snprintf, vasprintf, vfprintf, vsprintf, and
vsnprintf. The sources, in turn, are arguments to the wrap-
per function that calls the identified sinks.
Static data flow. The data flow specification for this vulnera-
bility is simple: we can statically recover all flows from the
sources to the sinks, and then reason about them symbolically.
Dynamic symbolic constraints. The dynamic symbolic con-
straints for this vulnerability check whether the format string
used in a sink is a constant or not. If this format string is not
a constant, this is flagged as a potential bug.

3.4 CWE-337: Predictable Seed in PRNG

The security of a Pseudo-Random Number Generator (PRNG)
depends on the unpredictability of its seed. If an attacker can
predict this seed then, regardless of the quality of the PRNG,
they can determine the random values used by the program. If
these random values are used for security-critical operations,
the attacker might be able to violate security.
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Occurrence. Unfortunately, a common practice, is to use the
current time (in seconds) to seed the PRNG. This makes the
random seed predictable, and is responsible for a number
of real-world vulnerabilities. Similar common anti-patterns
involve the use of process IDs as seeds. These IDs are pre-
dictably increasing, also making them poor choices of seeds.
Static data flow. The data flow specification for this vulnera-
bility is simple: we can statically recover all flows from the
sources to the sinks, and then reason about them symbolically.
While previous vulnerability classes used constant values as
negatives, they are treated as positives here.
Dynamic symbolic constraints. DSE is used to confirm the
results of the data flow analysis and establish a data flow
between the sources and the sinks. There are no additional
constraints that need to be applied.

4 ARBITER Analysis Framework

The properties identified in Section 3 enable the effective
combination of static and dynamic approaches into ARBITER.
In this section, we provide an overview of the ARBITER ap-
proach, and discuss, at a high level, how it detects PC vulner-
abilities in binary programs.

Figure 1 shows an overview of ARBITER. At a high level,
ARBITER combines scalable static analysis techniques with
precise DSE techniques. The former allows it to identify a
superset of PC vulnerability candidates in the program being
analyzed, while the latter acts as a filter for false positives,
configurable between precision and scalability. ARBITER
functions fully on binary code, and, while its underpinning
concepts are well-studied in source code, their use on binary
code required several innovative analysis improvements.

Input: The Binary. To analyze binary code, ARBITER needs
the binary in question. Unlike purely dynamic analyses (such
as fuzzing), the provided binary does not need to be runnable.
Input: Vulnerability Description. As discussed in Section 3,
PC vulnerabilities have certain properties that can be used to
detect them with static analysis. These properties are provided
to ARBITER as a Vulnerability Description (VD). A VD is
a programmatic representation of the static and symbolic
artifact descriptions in Section 3 (e.g., Section 3.1 for CWE-
131 and Section 3.2 for CWE-252). Other PC vulnerability
classes can be added through the creation of a VD.
Identifying vulnerable flows. ARBITER uses a combination
of techniques to identify flows potentially satisfying the VD
in the binary. It first searches for VD subjects on a recovered
Control Flow Graph, then queries a computed Data Depen-
dency Graph to identify data flows between these subjects
matching the provided VD. ARBITER computes paths repre-
senting these flows, and promotes these to the next step. This
process is described in Section 5.
Verifying vulnerable conditions. ARBITER uses Under-
Constrained Symbolic Execution (UCSE) to execute the pro-

vided paths and recover symbolic data relationships between
the source and sink. If this relationship satisfies the constraints
described in the provided VD, the path is promoted to the next
step. This process is described in Section 6.
Reducing context-based false positives. ARBITER limits
the context sensitivity of its static analysis to achieve scala-
bility. As a result, the data flow detected for a Vulnerability
Candidate might be missing constraints that would be present
with a higher context sensitivity, resulting in a false positive
detection. To alleviate this problem, ARBITER computes a
slice from the detected sink with a higher context sensitivity,
and symbolically executes it to identify missing constraints.
By increasing the context sensitivity level in this step, AR-
BITER trades scalability for precision. If ARBITER cannot
identify any constraints to invalidate an extant Vulnerability
Candidate, that candidate will be reported to the analyst as an
alert. This process is described in Section 7.

5 Identifying Vulnerable Flows

Taking a CFG and a VD as input, ARBITER builds and queries
a data dependency graph (DDG) with respect to the vulnerabil-
ity sources/sinks specified in the VD. The resulting candidate
vulnerable data flows will be verified by the dynamic analysis
component of ARBITER. This section will focus on the unique
static data flow tracking technique that drives ARBITER, how
the DDG is created, and how vulnerable data flow candidates
are identified.

5.1 Precise Static Data Flow Tracking
Graph-based and taint-based static analyses were used to find
taint-style vulnerabilities in both source code and binary code.
While PC vulnerabilities are similar, reasoning about them
may require more precision during data-flow tracking. AR-
BITER does this with a novel static data flow tracking tech-
nique, named SymDFT, that focuses on precision and scalabil-
ity while sacrificing soundness. Given any starting point (usu-
ally the beginning of a function), SymDFT statically emulates
the basic blocks in a context-sensitive and path-sensitive man-
ner, and models registers, memory (as a flat memory model
that covers global regions, stack, and heap), syscalls, and ac-
cesses to and from file descriptors (this captures accesses to
file and network sockets). SymDFT achieves high precision
of modeled data by using a symbolic domain, i.e., tracking
unknown variables and symbolic expressions during analysis.
Next we detail the key design decisions of SymDFT.

Traversal policy. On a function level, SymDFT traverses the
basic blocks inside the function in topological order, which
ensures a block is always visited after all its predecessors are
visited. Once a call to a callee is encountered, SymDFT will
analyze the callee function and use the returned abstract state
to proceed the analysis at the return site.
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Figure 1: ARBITER’s workflow. ARBITER discovers vulnerabilities in three steps: identifying vulnerable flows, verifying conditions, and reducing false positives.

Branching policy. SymDFT incorporates an idea underpinning
forced execution and blanket execution [12]: At each branch-
ing point it forks the abstract state and follows all branches,
regardless of branch feasibility: SymDFT collects symbolic
path predicates (i.e., symbolic constraints) as the emulation
progresses, but it does not evaluate the satisfiability of these
constraints. While this sacrifices precision, ARBITER restores
precision in the verification step described in Section 6.
State merging policy. Abstract states at the same binary ad-
dress are merged immediately, where each state is assigned
a merging label, and the concrete and symbolic expressions
are merged into a form of an if-then-else expression with the
merging labels being the conditions.
Termination. To ensure analysis termination, SymDFT em-
ploys an aggressive termination strategy: (1) When the call
depth exceeds 2 functions, SymDFT forges an abstract return
value instead of analyzing the callee and (2) Each loop is
visited at most 3 times. This aggressive termination strategy
trades a decrease in soundness and precision for scalability.

5.2 Building DDGs and Extracting Flows

ARBITER first identifies sources or sinks on the CFG and
recognizes the relevant functions. Then ARBITER builds a
DDG for the function containing each source or sink. Note
that these DDGs do not include any of the callers, which will
be further discussed in Section 7. Knowing sources and sinks,
identifying all vulnerable data flows on a DDG is as trivial as
traversing from sources or sinks and generate subgraphs.

When only sinks are described in the VD, ARBITER builds
a DDG for each function (and callees) where sinks are found,
instead of building a full-program DDG covering all potential
input sources. This significantly improves scalability of DDG
generation and vulnerable flow identification at the cost of
precision, which ARBITER corrects in the verification step.

6 Verifying Vulnerable Flows

Candidate vulnerability data flows collected during static anal-
ysis are not necessarily vulnerable because (1) they are un-
satisfiable or (2) the path predicates make the vulnerability

untriggerable even if the flow is valid. ARBITER uses under-
constrained symbolic execution to verify each candidate data
flow and eliminate those unsatisfiable or not vulnerable.

6.1 Under-Constrained Symbolic Execution

Due to incomplete CFGs and the dynamic coverage problem,
ARBITER usually cannot derive a feasible execution path that
starts from the entry point of the target binary and reaches the
vulnerability sink. Instead, binary program slices that candi-
date data flows correspond to usually do not include code that
is necessary for program state initialization. In source-based
analyses, under-constrained symbolic execution (UCSE) is
a viable approach to performing DSE on incomplete pro-
gram states [13, 29]. UCSE allows symbolic execution of
arbitrary functions without initializing data structures or mod-
eling environments. All values that are not available in the
incomplete state (e.g., missing parameters and unknown re-
turn values from callees) are deemed as under-constrained
variables. When an under-constrained variable is used as a
pointer, UCSE will initialize the variable as a pointer that
points to a freshly allocated memory region with the same
size the pointer type specifies. If the variable is not used as
a pointer, an under-constrained variable will be more con-
strained with symbolic constraints applied to it.

In ARBITER, we extend UCSE to support binary code.
UCSE fundamentally suffers from the aliasing problem by
assuming under-constrained pointers do not point to any exist-
ing objects (or in binaries, any allocated regions in memory).
Luckily, P3 in PC vulnerabilities dictates that no aliasing rela-
tionships that are uncaught by the control flow exists, which
sidesteps the aliasing problem in UCSE.

Two challenges arise because type information is unavail-
able on stripped binaries. We present them and our solutions.

Shadow memory allocation. Due to lack of type informa-
tion, UCSE does not know the size of the memory region to
allocate. In ARBITER, UCSE does not determine the sizes of
the memory regions that are allocated for under-constrained
pointers. Instead, we assume each under-constrained pointer
points to a shadow memory region that is completely isolated
from the stack, the heap, and other shadow memory regions.
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All pointers derived from an under-constrained pointer can
only be used to access the same shadow region.
Adding necessary constraints. UCSE on source code relies
on information about sizes of variables for constraining point-
ers (to within the variable) and finding violations (when a
pointer access goes beyond the range of the variable it should
point to). Such information is unavailable on binary code,
making constraining pointers and variables difficult, and cer-
tain memory accesses caused by under-constrained pointers
or variables may corrupt critical data structures on the stack
or in the global region (e.g., a fully constrained pointer, a
stored return address, etc.), which will lead to unsound sym-
bolic states that do not exist during execution. Hence, our
UCSE aggressively adds constraints to variables and pointers
so that key data on the stack or in the global region cannot
be overwritten. Note that this way, our UCSE will not find
vulnerabilities (e.g., stack buffer overflows) that involve over-
writing these critical data structures, but such vulnerabilities
are not within PC and are thus outside the scope.

6.2 Collecting Data Flow Constraints

For each candidate vulnerability data flow, ARBITER runs
UCSE on a program slice that is generated by traversing the
CFG from each sink. At the sink, ARBITER extracts the sym-
bolic expressions that represent data dependencies between
the source and sink and collects path predicates (constraints).
If the constraints corresponding to the VD are satisfiable,
ARBITER reports a potential VD violation.

7 Adaptive False Positive Reduction

Despite the satisfiability filtering of candidate vulnerable data
flows in the UCSE step, the lack of context still leaves a large
number of false positives. Because ARBITER works inside a
function, it does not have context-sensitive information that
might influence the control- and data-flow of a function.

We filter out false positives by increasing the analysis con-
text once a vulnerability is detected in a smaller context.
ARBITER recursively identifies all call sites of the current
function and proceeds to analyze in the context of the calling
frames. ARBITER recursively continues to expand the context
caller by caller until a predefined recursion limit is reached.

The recursion limit can be chosen by the analyst adap-
tively based on the number of reports and time constraints, as
each additional context could lead to an exponential increase
in analysis time. Our results show that each context expan-
sion steps cuts alerts by roughly a factor of two (shown in
Section 8.1), and three reduction steps reduce false positives
sufficiently for results to be manually verified.

Class Alerts True False Positive
Positive VFP DFP UT

CWE-131 436 194 184 11 47
CWE-134 158 12 139 3 4
CWE-252 159 83 15 56 5
CWE-337 377 372 0 2 4

Table 4: Summarizing the results of the different experiments. “VFP” refers
to the number of false positives classified as Vulnerability False Positive.
“DFP” refers to the number of false positives classified as Description False
Positive. “UT” refers to the number of reports that we could not triage due to
software complexity.

8 Evaluation

We performed several experiments to measure the effective-
ness of ARBITER in terms of both its performance and its
ability to identify bugs in real-world software, on a large
scale, while maintaining a high precision. The evaluation
was performed on a Kubernetes cluster of Intel Xeon CPUs
at 2.30GHz, with one core and 4GB of RAM dedicated to
the analysis of each binary. The prototype of ARBITER was
implemented atop angr [38].

We discuss three separate sets of experiments: a perfor-
mance evaluation on the coreutils Linux binaries to mea-
sure the computational cost of different parts of our techniques
(presented in Appendix C), a comparative experiment on the
Juliet program analysis test suite and several other Linux pro-
grams to position ARBITER with respect to state-of-the-art,
and a large-scale evaluation on the Ubuntu 18.04 software
repository (containing 76,516 binaries) to assess ARBITER’s
ability to detect vulnerabilities in the CWE-131, CWE-252,
CWE-337, and CWE-134 vulnerability classes.

8.1 Effectiveness Evaluation
To measure ARBITER’s ability to find bugs in real code,
we performed a large-scale effectiveness evaluation on all
userspace binaries in the x86-64 Ubuntu Linux 18.04 repos-
itories. Out of the 1,852,152 ELF files in the Ubuntu Linux
18.04 repositories, we excluded 1,708,122 kernel modules
(on which ARBITER is not designed to function), and 64,101
symbol-only ELF files (containing debug symbols for other
ELFs)4. The resulting 79,929 ELFs contained 79,343 unique
files. The underlying angr framework failed to process 2,829
of these, leaving us with a final dataset size of 76,516.

We checked each binary against ARBITER’s four imple-
mented VDs: CWE-131, CWE-252, CWE-134, and CWE-
337. Across the four vulnerability classes, with a recursion
limit of three for the Adaptive False Positive Reduction step,
ARBITER raised 1095 alarms. We manually analyzed all of
these 1095 alarms and were able to classify 1036 alarms into
636 True Positives and 400 False Positives. We differenti-
ated the False Positives between false positives stemming

4In our dataset of nearly 65k packages, 600 packages have on average
4,000 kernel object files each.
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from insufficient precision in the analysis (which we term a
Vulnerability False Positive) and false positives due to impre-
cision the VD itself (a Description False Positive)5. The 410
False Positives included 338 Vulnerability False Positives and
72 Description False Positives. For the remaining alerts, we
could not classify them into True or False Positives due to our
unfamiliarity with the applications and their complexity.

Table 4 presents a summary of ARBITER’s alerts. For the
curious reader, we include detailed information about the
numbers of binaries, functions, sinks, paths, and states that
ARBITER dealt with through various stages of its analysis on
the different vulnerability types in Appendix D.

We are responsibly disclosing vulnerabilities to the respec-
tive developers. Appendix A lists public (addressed or WONT-
FIX) vulnerability disclosures. Some vulnerabilities have now
been fixed due to our efforts (e.g., CVE-2018-18311), while
others were vulnerabilities rediscovered by ARBITER but not
yet deployed to Ubuntu repositories (e.g., CVE-2016-5636,
CVE-2017-1000158, and CVE-2020-7105).

Case Studies. We present several case studies of ARBITER’s
findings in Appendix E. One case study is especially interest-
ing involving OCaml.

During our triaging of ARBITER’s CWE-131 alerts, we
found 26 reports where the buggy function was almost iden-
tical. When we checked the source code, we found that the
programs were all written in OCaml, and the OCaml source
code of the functions in question did not contain any buggy
behavior. Upon further investigation, we found that all 26
alerts were caused by a bug introduced during compilation by
the OCaml compiler. We investigated this thoroughly and de-
veloped a Proof of Concept that triggered an integer overflow
and subsequently an out-of-bound heap access that eventually
crashes the program. This bug affects all 32-bit OCaml pro-
grams compiled with affected releases (up to the latest one) of
the OCaml compiler. We disclosed to the OCaml developers,
and they are currently investigating the issue.

8.1.1 CWE-131: Overflows at Allocation Sites

ARBITER raised 436 CWE-131 (Incorrect Calculation of
Buffer Size, described in Section 3.1) alerts in 444 functions
across 366 binaries on our dataset. Through manual static
analysis, we determined that 194 of these were True Positives,
184 were Vulnerability False Positives, and 11 were Descrip-
tion False Positives. We were unable to triage 47 alerts across
34 binaries due to the complexity of the vulnerable code and
our lack of familiarity with the code bases in question.

Description False Positives. 11 alerts reported across 10 bi-
naries show that the predicate we used in our CWE-131 VD
does not always imply the presence of a bug. Our VD goal

5As the VD we used for both experiments were proven incorrect in at least
a few cases, we feel it is important to discuss both types of false positives
separately.

was to model an integer overflow vulnerability in the argu-
ment to an allocation invocation. However, the predicate in
the VD is based on a typical pattern for an integer overflow,
not a specific integer overflow marker. Specifically, the pat-
tern describes the situation of a size variable being passed as
an argument to an allocation wrapper, and overflowing dur-
ing computation, resulting in a smaller variable being passed
to the allocator. In 11 out of 150,077,458 functions in the
Ubuntu dataset this does not hold: a computation performed
by the wrapper function legitimately reduces the allocation
size, without undergoing an integer overflow.

Vulnerability False Positives. We identified several major
reasons for VFPs among the CWE-131 alerts.

Unrealistic Execution Requirements. Triggering some de-
tections may require executing callbacks an unreasonable
number of times. For example, a detection that depends on a
global counter becoming very large might need the function
that increments that global counter to be executed billions of
times, and is thus not triggerable in practice.

Unrealistic Data Requirements. Some alerts are generated
for functions that would suffer an integer overflow when pro-
vided with a string of, e.g., 264 bytes. As such data is infeasible
to produce or transfer, these bugs are not triggerable. By in-
vestigating these cases further, we found that ARBITER raised
alerts in 24 functions across 24 binaries because it assumed
that 264-1 byte-long strings were practical to have in memory.

Dead code. Some detections that appeared to be practical
bugs were in dead code that could not be triggered.

Insufficient analysis context. In some cases, caller func-
tions higher up in the call stack introduce constraints that
make the vulnerability impossible to trigger in practice, but
ARBITER does not analyze to a high enough caller level to
reason about those constraints. For example, the alttab bi-
nary uses LibPNG to load a PNG, and contains a 4-byte
integer overflow caused by image dimensions. Although the
PNG specification allows for PNG height and width up to 232,
LibPNG limits them to 216, making the bug untriggerable.

Signedness side-effects. In situations where an overflowed
integer is sign-extended before being used in an allocation
function, the extended value becomes huge, and the process
exits because the allocation fails.

8.1.2 CWE-252: Unchecked Return Values

In this template, ARBITER symbolically executes paths start-
ing from the sink and tries to reach the end of the function that
contains the sink. Then, during FP reduction, it executes paths
from the outermost caller to the sink and continues execution
until the end of that caller. This differs from the other three
templates where ARBITER only explores from the caller up
until the sink because, in CWE-252, the otherwise-unchecked
return value could later be checked by a caller function.

For security-critical APIs listed in Section 3.2, ARBITER
produced a total of 159 CWE-252 alerts in 135 functions
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across 126 binaries. We manually triaged these to identify 83
True Positives, 139 Vulnerability False Positives, 3 Descrip-
tion False Positives, and 4 alerts that we could not triage.
Description False Positives. Of the filtered list of 159 reports,
we found 53 reports that violated the assumptions we had
made while generating our VD for several reasons.

Atomic operation confusion. There were two detections
where the subject’s return value was overwritten with a default
value using a single instruction cmov, which is a conditional
mov instruction. ARBITER assumed that if a single state can
satisfy either constraint for the return value of the subject, it
must be reported as a bug. However, in these cases, the cmov
instruction did not generate a new state but added a constraint
on the return value of the subject. Our analysis incorrectly
classifies these instances as bugs. Similarly, two other false
positives were caused by setz. We can solve this problem by
modifying the underlying code lifting mechanism to split a
single cmov/setz instruction into two branches.

Unsupported error values. We had assumed that the re-
turn value of the subject could be either SIZE_MAX or
UINT_MAX to return errors as 64- or 32-bit values respec-
tively. Therefore, our VD would check if the value returned
is either SIZE_MAX or UINT_MAX. All sinks VD except
for mmap return UINT_MAX on error, while mmap returns
SIZE_MAX on error. In the case of mmap, both UINT_MAX
and 0 are considered successful return values. Therefore, our
analysis incorrectly labels these cases as True Positives. We
found 52 cases where the return value of mmap was compared
against UINT_MAX and was (incorrectly) reported.
Vulnerability False Positives. In this case, false positives are
usually caused by limitations in ARBITER’s analysis engine.

Duplicate sinks. When a function has more than one sink,
ARBITER would create symbolic expressions for the return
value of each sink. However, the dependency between the sink
and the generated symbolic expression is not preserved. There-
fore, when the return value of one of these sinks is checked
for error and the other is not, the constraints applied on the
unchecked return value would be satisfied. ARBITER incor-
rectly classifies the first sink as the alert location when the
actual alert is linked to the second sink. However, it should be
noted that ARBITER also correctly identifies the alert linked
to the second sink. We found eight instances of such alerts.

Unsupported API functions. When some functions return
an error code, the program will call function __errno_location
to get the address of the errno variable for the current thread.
The program will then dereference the returned address to
retrieve the error code. When __errno_location is invoked,
the address it returns is stored in register rax. But, angr does
not overwrite or clear rax after simulating __errno_location.
This causes ARBITER to assume that the return value of the
sink (instead of the address of errno) is being dereferenced,
and according to the VD for CWE-252, the dereferenced
value must also be checked. ARBITER raises an alert when
the check is missing. We found six such alerts.

Ignoring error checking functions. Recall that for this VD,
in the FP reduction step, ARBITER would symbolically ex-
plore paths from a caller function until the sink after which
it would continue exploring paths that lead to the end of the
caller function. This is different from other VD’s where AR-
BITER only symbolically explores paths from a caller function
up until the sink. The reason is that other VD’s can determine
the existence of a bug at the sink, unlike this VD.

This increase in complexity of the paths explored leads
to a large number of timeouts with each additional level of
FP reduction. Therefore, we used a feature of the underlying
framework that does not symbolically explore calls to any
function after the sink has been invoked. This can lead to
incorrect results if the return value of the sink is passed to a
sub-routine as an argument. If this sub-routine is tasked with
checking the value of its argument, ARBITER will not detect
this check because the sub-routine will not be explored at all.

We found only one case where such a sub-routine was used
to check the return value of the sink.

8.1.3 CWE-337: Predictable Seed in PRNG

ARBITER reported 377 CWE-337 alerts in 372 functions
across 350 binaries. Through manual triaging, we identified
372 True Positives, 2 Description False Positives, and 4 cases
that were too complex to triage.
Description False Positives. These 2 Description False Pos-
itives occurred because a seed used in the call to srand was
generated by combining (e.g., with an xor operation) the re-
turn value of time with a value read from the kernel’s random
number generator (using /dev/urandom). Because our descrip-
tion did not test if anything other than the time was used to
seed the PRNG, ARBITER had no way to filter out these cases.
Vulnerability False Positives. We did not identify a Vulner-
ability False Positives in the results. The common case was
srand(time(NULL));.

8.1.4 CWE-134: Uncontrolled Format String

ARBITER raised 158 CWE-134 (Controlled Format String,
described in Section 3.3) alerts across 139 functions in 119
binaries. Through manual triage, we determined that 12 of
these reports where True Positives, where the user could con-
trol the format string and trigger a format string vulnerability.
However, we found that 142 of these reports did not lead
to a format string vulnerability and therefore are false posi-
tives, mostly (as discussed next) due to insufficient context
information even with 3 levels of FP reduction.
Description False Positives. Among the 142 false positive
reports generated by ARBITER during this experiment, three
were caused due to a violation of the assumptions we made
while generating our VD. Our objective was to find invoca-
tions of the printf family of functions where the format
specifier was not a constant string.
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However, our VD would flag situations where a string
is generated by combining multiple constant strings us-
ing sprintf-like functions. We found 1 situation where
sprintf-like were invoked to write constant strings into a
stack buffer. This stack buffer was then used as the format
specifier for a different sink. Because the stack buffer is not a
constant value, ARBITER flagged such situations as positives.

In another two cases, the format specifier was set to NULL.
Since this value is not considered as a constant string, these
two reports were alerted by ARBITER.

Vulnerability False Positives. 36 false positives were caused
by functions similar to G_gettext and __dcgettext. These
functions translate a text string into the user’s native language.
Because ARBITER lacked this knowledge, it assumed that the
string returned by these functions was not constant.

A majority of the false positives occurred due to insufficient
context information. We found that 103 of the false positive
reports occurred since a caller that was 4 levels (or more) up
the callstack invoked the subsequent functions with a constant
string as the argument. Since our false positive reduction
step only included three level callers, it could not detect these
constants and misclassified them as positives.

8.2 Comparative Evaluation
To understand how ARBITER fits into the current state of
the art, we perform a comparative evaluation across several
experiments. We demonstrate the advantage of ARBITER’s es-
chewing of traditional dynamic analysis by evaluating against
AFL, compare ARBITER against static analysis techniques
that have the advantage of source code access but lack AR-
BITER’s symbolic execution capabilities (CodeQL and Infer),
and use ARBITER to analyze the Juliet static analysis test
suite and identify previously unreported bugs.

8.2.1 ARBITER vs. Dynamic Analysis (AFL)

While the approaches and techniques we used to detect vulner-
abilities are different from the dynamic approach of fuzzing,
a comparative evaluation of a popular fuzzer can demonstrate
strengths that ARBITER provides over fuzzing.

We generated POCs for 25 integer overflow vulnerabili-
ties in 15 binaries that ARBITER had reported, and evaluated
whether AFL is able to find these vulnerabilities. Of these 15
binaries that contain vulnerabilities, only seven are standalone
binaries, with the remainder being shared objects that required
a harness to execute. Two of these seven binaries could not
be run without additional manual environmental configura-
tion, such as GUI/network. For the remaining five, we used
a wrapper that would use the bytes generated by AFL as the
relevant command-line arguments or environment inputs in
order to fuzz them. Because, while creating the POCs for AR-
BITER’s detection, we had already understood the appropriate
command-line argument/environment variable that triggers

the crash, we modified the wrapper to fuzz only that particular
command-line argument/environment variable value.

We ran AFL for 24 hours on one core per binary. In two,
AFL found the same bug as ARBITER. In one, AFL found a
different crash bug than ARBITER, in a different vulnerability
class. In the remaining two, AFL did not find a bug.

When we tried fuzzing these binaries without explicitly
controlling the argument/environment variable that we iden-
tified with ARBITER’s help, AFL could not trigger the crash
after 24 hours of fuzzing each binary.

These results suggest that a combination of fuzzing and the
techniques proposed in ARBITER might be a promising area
of research, though recent trends in hybrid fuzzing research
make that a fairly predictable statement. They also show that
ARBITER does find bugs that AFL misses, and does so without
the need for manual harnessing.

8.2.2 ARBITER vs CodeQL

CodeQL [35] is a source code analysis engine available on
the LGTM [36] platform. We wanted to evaluate whether
CodeQL could detect any of the errors we identified with
ARBITER. The queries that match our two implementations
of ARBITER the closest are Inconsistent operation on return
value and Overflow in uncontrolled allocation size. Note that
CodeQL’s only analysis is in a semantic domain on a source
code level; hence, the queries are fundamentally different
from ARBITER’s symbolic domain.

We found 11 programs with CWE-252 ARBITER alerts
and 54 programs with CWE-131 ARBITER alerts on LGTM.
LGTM identified no inconsistent return value operations and
only one true positive allocation size overflow alert on these
programs. However, it did raise 6 alerts that we matched those
that we manually determined to be false positives and 3 alerts
that matched those we could not effectively triage.

These results show that ARBITER can identify bugs missed
even by source-level analyzers such as CodeQL.

8.2.3 ARBITER vs Infer

Infer is a static program analyzer for Java, C, and Objective-
C, written in OCaml [4, 14]. Internally, Infer uses separation
logic and bi-abduction to reason about bug classes such as null
pointer dereferences, memory leaks, coding conventions, and
unavailable API’s. Unfortunately, in 2017 Infer removed the
support for the bug class of ignored return values [15]. Never-
theless, Infer still supports the detection of integer overflows
in Java, C, and Objective-C programs.

We evaluated Infer on a subset of the integer overflows
for which we created POCs. Four targets have build system
unsupported by Infer, so we ran the tool manually on the
particular source code files. Infer was unable to detect integer
overflows in these targets. We believe that Infer’s separation
logic analysis capabilities are less powerful when it comes
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Listing 1 An example of Juliet v1.3 CWE190 faulty test cases.
1 int goodB2GSink(unsigned int data) {
2 ...
3 if (abs((long)data) < (long)sqrt((double)UINT_MAX)) {
4 unsigned int result = data * data;
5 printUnsignedLine(result);
6 }
7 ...
8 }

to sink-triggered vulnerabilities, only enabling detection of
shallow integer overflow vulnerabilities. This again shows
the strength of ARBITER’s combination of static analysis and
symbolic execution.

8.2.4 ARBITER on Juliet

We evaluated ARBITER’s integer overflow VD against test-
cases in the Juliet Test Suite (v1.3), a synthetically generated
data set created to assess the capabilities of static analysis
tools. Version 1.3 contains many test cases written in C/C++
for multiple CWE types. We adapted our CWE-131 vulner-
ability description CWEs, CWE-680 (Integer Overflow to
Buffer Overflow), and CWE-190 (Integer Overflow), and ex-
panded it to C++ by adding new to our list of sinks. This
represents a total of 15,680 test cases, of which 4,536 have
intentional bugs described by the Juliet documentation.

Description False Negatives. Several test cases (for CWE-
680) initialize variables to constant values that are too large
to be used safely in an arithmetic operation and can lead
to integer overflows. However, ARBITER’s integer overflow
vulnerability description does not reason about constant-value
sources. Thus, we misclassified 52 test cases as negatives
when in fact, Juliet considers them to be bugs.

Signedness adaptation. When reasoning about overflows,
we could determine the signedness of the data involved based
on the type signature of the sink function (i.e., malloc takes
unsigned integers). However, all of our prior sinks used un-
signed integers, while Juliet has provided several signed sinks.

Juliet’s unsigned overflow test cases use the sink
printUnsignedLine, which takes an unsigned argument,
while the signed test cases use the sinks printIntLine,
printHexCharLine and printLongLongLine.

For the unsigned test cases, we used the same constraints
as the integer overflow experiment because the comparison
by default is unsigned. For the signed test cases, we modified
the constraints to use a signed comparison.

Unexpected positives. Examining the results, we found that
several test cases in the Juliet test suite that were classified as
“safe” are, unknowingly to the developers, vulnerable.

A snippet of a faulty test case, performing a square opera-
tion on a 32-bit unsigned integer, is shown in Listing 1. The
code attempts to ensure that the value is small enough to per-
form the square operation without an overflow by computing

Figure 2: The result of evaluating ARBITER on the Juliet Test Suite v1.3
on CWEs 190 and 680. ARBITER found 3,234 True Positives, 1,015 False
Positives, 9,581 True Negatives and 2,580 False Negatives. NP specifies the
190 unexpected “New Positives” that ARBITER found.

Name Genre Source needed Precision Recall

ARBITER Hybrid False 0.77 0.57
CLORIFI [23] Hybrid True 1 0.95
Li et al. [24] Hybrid True 1 0.973

Ribeiro et al. [33] Static True 0.678 0.958
Yang et al. [47] Static False 1 0.995

Table 5: A comparison of strengths and weaknesses of tools that evaluate on
the Juliet data set.

the absolute value of this integer and compares it with an
upper bound.

The absolute value is calculated using the abs function
which accepts a signed integer as argument and returns an-
other signed integer. This conversion of an unsigned data
type to a signed causes a large value to pass the check and
subsequently lead to an overflow. For example, if the value
of data is UINT_MAX (0xFFFFFFFF), the function abs will
return the value 1, passing the size check. The result of the
multiplication is the value 0xFFFFFFFE00000001, resulting
in a 32-bit integer overflow.

ARBITER identified 190 such faulty test cases within the
Juliet test suite. After ensuring that they were actually trigger-
able bugs (by crafting a POC for each), we reported it to the
developers, but have not heard back from them. Through the
rest of this section, we consider these 190 test cases as true
positives in the ground truth.

ARBITER’s results. We ran ARBITER with the Adaptive
False Positive filtering tuned to different levels: 0 (no addi-
tional filtering), 1, and 2. At 0 levels of false positive filtering,
ARBITER reported had 2,411 TP and 2,890 FP. At one level,
the FP count reduced to 2,121, and the TP count reduced to
2,197 (likely as a result of timing out on symbolic tracing of
several paths). At two levels, the TP count increased to 3,234
(because of additional symbolic constraints that increase the
tractability of UCSE), and the FP count fell to 1,015. AR-
BITER achieves a precision of 0.77 and recall of 0.57. We
show the data in Figure 2.
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Literature comparison. There are several tools that evaluate
against the Juliet dataset, and we can directly compare our
results with theirs. We present this comparison in Table 5.

Interestingly, these tools use a diverse set of approaches.
Most of them require source code to function, with source
code being a much more robust area of static analysis (but not,
as shown in our evaluations against CodeQL and Infer, always
better than ARBITER). One that does not, the technique pro-
posed by Yang et al. [47], uses a machine learning model that
recognizes vulnerability patterns to detect them and reports
a precision of 1.00 and a recall of 0.995. Of course, models
trained to recognize vulnerable patterns in synthetic datasets
are prone to overfitting: Yang et al. report that the same model
trained on the Juliet Test Suite achieves a precision of 0.0036
and a recall of 0.539 when used on real world vulnerabilities
from the NVD database.

Importantly, none of these tools detected the faulty test
cases that ARBITER detected in the Juliet test case. For source-
code-based techniques, this is likely due to lack of modeling
for the corner case behavior of the abs function, which AR-
BITER does by functioning on the binary level. For machine-
learning techniques, this is likely due to training on Juliet’s
stated ground truth, which is inaccurate in this case.

9 Limitations and Discussion

ARBITER has a number of analysis limitations as well as
limitations on the type of vulnerabilities.

CWE coverage. ARBITER’s effectiveness is limited to CWE
types that can be classified as PC vulnerabilities as described
in Section 3. Some of the limitations of the PC requirement
stem from underpinnings of the static analyses used by AR-
BITER, specifically for quickly finding analysis targets and
supporting the limited analysis context. Others are imposed
by ARBITER’s use of symbolic execution to verify alerts.

An example CWE that does not satisfy ARBITER’s re-
quirements is CWE-362 (Race-Conditions). The difficulty of
identifying sinks (variables shared between threads) CWE-
362 violates P2, the need to reason about variable accesses
across thread contexts violates P3, and the impact of execution
sequence on the data flow analysis result violates P1.

Static analysis limitations. The static analysis must be able
to find the VD subjects first. Inlined functions, statically
linked, or stripped programs make this task harder but not
impossible. Furthermore, the analysis needs to recover the
control- and data-flow up to a certain quality. Large or ob-
fuscated programs can make this task harder and very time-
consuming, which affects the scalability of ARBITER. Finally,
as we saw in the evaluation, ARBITER does encounter is-
sues caused by classical static analysis problems, including
aliasing, resulting in an increase of false positive rates.

Dynamic analysis limitations. ARBITER’s dynamic compo-
nent must execute program slices using Under-Constrained

Symbolic Execution. The limitations of symbolic execution
are well known and effective solutions are still being studied.
If these slices are too large, the dynamic execution can suffer
state explosion, leading to slowdown or failure of this step.
Additionally, due to the under-constrained nature of our DSE
phase, ARBITER suffers from false positives through the lack
of scope and the corresponding constraints on the program
slice under test.

Take-away. As our evaluation results show, despite limita-
tions in its underlying techniques, ARBITER can (and does)
achieve actionable results on large-scale analyses of real-
world software. Analyzing 76,516 binaries with purely dy-
namic analysis is simply not feasible, and, until now, scalable
and precise static analysis techniques have not been devel-
oped. Despite its limitations, ARBITER takes an important
step toward practical, large-scale binary analysis.

VD Implementation. The first challenge in implementing
a VD is to understand the vulnerability type that is being
targeted. An analyst must match components of the target
vulnerability (e.g., as sources and sinks, data-flow properties)
with the corresponding properties for the VD in ARBITER.
Once this matching is performed, it is then relatively straight-
forward to implement the VD using ARBITER’s API. How-
ever, there are some edge cases that may only surface once
the VD has been implemented. During our evaluation, we
found (and fixed) some issues that caused a number of false
positives such as the case of Unrealistic Data Requirements
in Section 8.1.1 and the cases of the gettext family of func-
tions as described in Section 8.1.4. While new edge cases
can arise when implementing a new VD, we have found that,
once these edge cases were identified, fixing them was trivial.
More details about the specific implementations of existing
VDs in ARBITER is presented in Appendix B.

Applying ARBITER. Even though ARBITER’s false positive
rate of nearly 50% improves on state-of-art techniques that
target binary applications with similar scalability [38], prior
studies have shown that less than 20% of developers are will-
ing to accept false positive rates greater than 40% [9]. In our
experience, ARBITER’s results are best combined with man-
ual audits of the target application to verify if it is possible to
trigger the vulnerability condition, but these results could be
used in combination with existing dynamic approaches that
are aimed towards verifying static analysis reports which can
eliminate false positives [3, 22].

10 Conclusions

In this paper, we presented ARBITER, a novel framework,
combining the strengths of static and dynamic analysis tech-
niques for identifying complex security vulnerabilities in any
depth of a program at scale. Using ARBITER, we could verify
VDs on a substantial subset of Ubuntu package repositories,
identifying and reporting many security vulnerabilities.
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We envision that ARBITER will be used in the software
development life cycle and by security researchers to protect
software by analyzing and verifying VDs. To that end, we
have presented an in-depth evaluation of ARBITER, and we
are releasing it as an open-source framework.
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A Disclosures of Vulnerabilities Found by AR-
BITER

The following is a list of vulnerabilities that are found by
ARBITER and responsibly disclosed by the authors during the
course of this research project.

• CVE-2018-18311: Integer overflow in Perl before 5.26.3
• Integer overflow in Python-PIL 6

• Integer overflow in LibTIRPC 7

• Unchecked setuid in CSound 8

• Unchecked setuid in ping and ping6 in Inetutils 9

B Specializing ARBITER

We implemented ARBITER as a general analysis framework
that is designed to be easily specializable to detect instances of
specific vulnerability classes. In our framework, analysts im-
plement short vulnerability descriptions that specify sources,
sinks, and dynamic constraints. ARBITER, in turn, is imple-
mented in roughly 2,000 lines of Python on top of the angr
binary analysis engine (in which we modified roughly 140
lines of code to implement improvements necessary for AR-
BITER).

In this section, we describe the effort involved to special-
ize ARBITER to detect vulnerabilities in the four classes we
chose for our evaluation: CWE-131 — “Incorrect Calculation
of Buffer Size”, CWE-252 — “Unchecked Return Value”,
CWE-337 — “Predictable Seed in Pseudo-Random Number
Generator”, and CWE-134 — “Controlled Format String”.
ARBITER’s vulnerability descriptions are created by imple-
menting three functions:

specify_sources(binary): This function should return a
set of program locations (e.g., function names or addresses)
and variable specifications (for example, the return value, or
a specific argument to the function). These locations will
be used as sources to find potentially vulnerable flows in
ARBITER’s static analysis.
specify_sinks(binary): Similar to sources, this specifies
a set of variables to be used as sinks to find potential vulnera-
ble flows.
apply_constraint(state, sources, sink): When AR-
BITER detects, and symbolically analyzes, a potentially vul-
nerable flow, it uses this function to check the flow against a
symbolic vulnerability condition.

6https://github.com/python-pillow/Pillow/pull/3703
7http://git.linux-nfs.org/?p=steved/libtirpc.git;a=

commit;h=56b780e61ed4bae8b728a600fc5ac8052d0d3582
8https://github.com/csound/csound/pull/1335
9https://git.savannah.gnu.org/cgit/inetutils.git/

commit/?id=02a379763bf651a09b5cb728c1d6b811dc71d021

These vulnerability specifications are concise enough to in-
clude in this section.
CWE-131: Incorrect Calculation of Buffer Size.

cwe131.py
1 def specify_sources(binary):
2 return {} # defaults to function arguments
3

4 def specify_sinks(binary):
5 return { "malloc": 0 } # first argument to malloc
6

7 def apply_constraint(state, sources, sink):
8 for source in sources:
9 if source.length < sink.length:

10 #equalize bit length of source and sink
11 source = source.zero_extend(sink.length-source.length)
12 state.solver.add(sink < source)

CWE-252: Unchecked Return Value.

cwe252.py
1 def specify_sources(binary):
2 # specify return values (index 0 in arbiter) of
3 # security-relevant system calls
4 return {
5 'access': 0, 'chdir': 0, 'chown': 0,
6 'chroot': 0, 'mmap': 0, 'prctl': 0,
7 'setrlimit': 0, 'stat': 0, 'setuid': 0,
8 'setgid': 0, 'setsid': 0, 'setpgid': 0,
9 'setreuid': 0, 'setregid': 0, 'setresuid': 0,

10 'setresgid': 0
11 }
12

13 def specify_sinks(binary):
14 # arbiter shorthand for the return value
15 # of the _caller_ of these functions
16 return [
17 'access', 'chdir', 'chown',
18 'chroot', 'mmap', 'prctl',
19 'setrlimit', 'stat', 'setuid',
20 'setgid', 'setsid', 'setpgid',
21 'setreuid', 'setregid', 'setresuid',
22 'setresgid'
23 ]
24

25 def apply_constraint(state, sources, sink):
26 if state.satisfiable(
27 extra_constraints=[sources[0] == -1]
28 ):
29 # target function allows both negative and
30 # positive values (indicating absence of
31 # checks)
32 state.solver.add(sources[0] == 0)
33 else:
34 # reject the state by making it unsatisfiable
35 state.solver.add(False)

CWE-134: Controlled Format String.

cwe134.py
1 def specify_sources(binary):
2 return {} # defaults to function arguments
3

4 def specify_sinks(binary):
5 # the format argument of string formatters
6 return {
7 'printf': 0, 'fprintf': 1, 'dprintf': 1,
8 'sprintf': 1, 'vasprintf': 1, 'snprintf': 2,
9 'fprintf_chk': 2, 'dprintf_chk': 2,

10 'sprintf_chk': 3, 'vasprintf_chk': 2,
11 'asprintf_chk': 2, 'snprintf_chk': 4,
12 }
13

14 def apply_constraint(state, sources, sink):
15 # check for the format string in the ELF
16 addr = state.solver.eval(sink, cast_to=int)
17 elf_address = \
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18 state.project.loader.find_section_containing(addr)
19 if elf_address is not None:
20 state.solver.add(False)

CWE-337: Predictable Seed in PRNG.
cwe337.py

1 def specify_sources(binary):
2 # return value of time()
3 return { "time": 0 }
4

5 def specify_sinks(binary):
6 # first argument of srand()
7 return { "srand": 0 }
8

9 def apply_constraint(state, sources, sink):
10 # no constraints --- purely a data flow problem
11 pass

C Performance Evaluation

In order to evaluate the performance of ARBITER, we exe-
cuted the integer overflow detection described in Section 3.1
on all 105 binaries in the well-tested coreutils suite. It took a
total of 884 seconds for ARBITER to analyze 27,608 functions
and locate sources and sinks in 763 of them.

During the data flow recovery step, ARBITER experienced
failures in the underlying angr framework for 62 of the 763
functions. For the remaining 701 cases, it successfully ex-
tracted data flows to 1,303 allocator call sites. Out of these,
364 had constant sizes (no data dependency), and 939 resulted
in paths representing data flows allocator call sites across 567
functions. This phase took a total of 4,585 seconds.

ARBITER then symbolically executed each path with
Under-Constrained Symbolic Execution, resulting in 45 fail-
ures due to implementation problems, 251 timeouts (with the
default 10-minute timeout per flow), 133 failures to find a
satisfiable path (i.e., as result of over-approximation of static
analysis), and 510 data flow predicates. This step took a total
of 15,705 seconds.

Checking these 510 predicates against the VD description
resulted in 124 candidate alerts. However, after performing
its adaptive false positive filtering to a level of two callers,
ARBITER successfully eliminated all 124 false positives.

D Detailed Evaluation Results

We detail the binaries, functions, identified sinks, determined
data flows, explored paths, analyzed states, and raised alerts in
the large-scale evaluation on CWE-131, CWE-134, CWE-252,
and CWE-337 in Table 6.

E Case Studies

For the voracious reader, we present a number of case studies
of select bugs identified by ARBITER.
Case Study: Integer Overflow in Perl. ARBITER found a
vulnerability that was present in versions of the Perl runtime

Listing 2 Part of the Perl source code that contains the Perl_my_setenv
function, where ARBITER detected an integer overflow in line 14. The vul-
nerability was assigned to CVE-2018-18311.

1 #define my_setenv_format(s, nam, nlen, val, vlen) \
2 Copy(nam, s, nlen, char); \
3 *(s+nlen) = '='; \
4 Copy(val, s+(nlen+1), vlen, char); \
5 *(s+(nlen+1+vlen)) = '\0'
6

7 void
8 Perl_my_setenv(pTHX_ const char *nam, const char *val)
9 {

10 ...
11 const int nlen = strlen(nam);
12 const int vlen = strlen(val);
13 char * const new_env = (char*)safesysmalloc(
14 (nlen + vlen + 2) * sizeof(char));
15 my_setenv_format(new_env, nam, nlen, val, vlen);
16 ...

Listing 3 Part of the Pillow source code that contains an integer overflow in
line 5.

1 int
2 ImagingMemorySetBlocksMax(ImagingMemoryArena arena, int blocks_max){
3 ...
4 else if (arena->blocks_pool != NULL) {
5 p = realloc(arena->blocks_pool, sizeof(*arena->blocks_pool) *
6 blocks_max);
7 ...

before 5.28. It could lead to heap overflows and potentially to
arbitrary code execution. The relevant source code snippet is
shown in Listing 2.

The function Perl_my_setenv is called when the user de-
cides to initialize the value of an environment variable. The
variables nam and val are the environment variable’s name
and value, respectively. In this function, the two 32-bit inte-
gers nlen and vlen are used to store the length of the nam and
val string, respectively. These integers are then added together
along with the constant 2, and the sum is used to allocate a
buffer on the heap.

The addition at line 14 in Listing 2 is the point where this
arithmetic can lead to an integer overflow, which subsequently
leads to a small buffer being allocated. At line 15, the function
my_setenv_format copies the two strings separately to the
newly created buffer, which results in a heap buffer overflow
with controlled input. This vulnerability was assigned CVE-
2018-18311 and has now been fixed. However, it is interesting
to note that this vulnerability was introduced in 2001 and
remained undetected until 2018.
Case Study: Integer overflow Vulnerability in Pillow. AR-
BITER found another vulnerability in the python-pil package,
which we reported to the maintainers and has since been fixed.
The vulnerability occurs in the function ImagingMemorySet-
BlocksMax and a snippet of the relevant code is provided in
Listing 3.

The integer overflow vulnerability occurred at line 5 when
the 32-bit signed integer blocks_max is multiplied with a con-
stant, which is then used as the second argument to the func-
tion realloc. In a 64-bit environment, the second argument to
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CWE CWE-131 CWE-134 CWE-252 CWE-337

Starting binaries 76,516 76,516 76,516 76,516

Recon binaries / functions 42,611 / 980,758 42,690 / 1,233,827 14,228 / 96,715 3,207 / 4,554

DDA analyzed binaries / functions / flows 41,796 / 788,970 / 1,307,990 42,366 / 1,044,218 / 3,311,716 14,103 / 88,399 / 84,359 3,206 / 4,490 / 5,074

DDA identified binaries / functions / sinks 36,696 / 346,701 / 692,501 26,576 / 192,846 / 429,711 13,485 / 55,388 / 55,388 3,106 / 4,083 / 4,641

UCSE analyzed binaries / functions / paths 29,577 / 209,217 / 145,167 19,410 / 103,926 / 87,383 12,081 / 47,913 / 73,823 2,849 / 3,622 / 3,414

UCSE identified binaries / functions / states 11,495 / 24,781 / 31,436 13,460 / 39,276 / 39,305 1,851 / 2,388 / 4,413 2,239 / 2,661 / 2,741

FP1 binaries / functions / states 1,916 / 2,693 / 3,310 3,013 / 4,891 / 4,894 310 / 686 / 942 247 / 277 / 281

FP2 binaries / functions / states 695 / 928 / 1,037 420 / 489 / 489 71 / 71 / 126 83 / 92 / 92

FP3 binaries / functions / states 270 / 318 / 351 183 / 221 / 222 58 / 58 / 107 42 / 45 / 45

Main binaries / functions / states 121 / 161 / 181 16 / 25 / 39 / 68 / 77 / 101 328 / 347 / 352

Final alerts 436 158 159 377

Table 6: Summarizing the results of the experiments for 4 templates targeting 4 types of CWEs. This table shows the detailed output for each of ARBITER’s
analyses. Main binaries are those binaries in which a false positive reduction step reached the “main()” function as a caller. In this case, ARBITER reports the
alert (as no further FP reduction is possible). Because of how the data was logged, there is an overlap between the binaries/functions/alerts in Main and FP3. The
Final alerts contains the total number of alerts for each CWE type after filtering out alerts that do not correspond to the list of sinks we use for each CWE type.

Listing 4 Pillow code of the calling context of function ImagingMemorySet-
BlocksMax. The check in line 7 prevents the integer overflow, that ARBITER
detected, in a 64-bit environment. On a 32-bit architecture, however, an
integer wrap-around can be achieved with a positive value, hence, the vulner-
ability is triggerable.

1 static PyObject*
2 _set_blocks_max(PyObject* self, PyObject* args)
3 {
4 int blocks_max;
5 if (!PyArg_ParseTuple(args, "i:set_blocks_max", &blocks_max))
6 return NULL;
7 if (blocks_max < 0) {
8 PyErr_SetString(PyExc_ValueError,
9 "blocks_max should be greater than 0");

10 return NULL;
11 }
12 ...
13 ImagingMemorySetBlocksMax(&ImagingDefaultArena, blocks_max);
14 ...

realloc is a 64-bit value whereas blocks_max is a 32-bit value.
Since blocks_max is a signed integer, it gets sign-extended to
a 64-bit value. In this situation, the only way that an integer
overflow occurs is if the sign extension results in a large 64-bit
value, which in turn only occurs if the initial blocks_max is a
negative value. However, if we look at the code that invokes
this ImagingMemorySetBlocksMax function, we see that this
vulnerability cannot be triggered. The relevant code is shown
in Listing 4.

The PyArg_ParseTuple is used to extract a 32-bit inte-
ger value from the args object and store the result in the
blocks_max variable. We can see that this value is immedi-
ately compared with the value 0, and an error is generated if
it is found to be lower. Therefore, there is no possible way of
triggering this vulnerability in a 64-bit environment.

However, in a 32-bit environment, the second argument to
realloc is a 32-bit value, which makes it possible to generate
a positive value that can wrap around the 32-bit integer space
during the multiplication. We were able to find such a positive
value that would result in a value of 0 after multiplication.
According to the description of realloc, when the second
argument is 0, it is equivalent to calling free. Without the
pointer being set to NULL, this ends up being a Use-After-
Free (UAF) scenario. We reported this vulnerability to the

Listing 5 Attempting to drop privileges before creating log file inside
Csound.

1 int set_rt_priority(int argc, const char **argv)
2 {
3 ...
4 ignore_value(setuid(getuid()));
5 ...
6 }

maintainers and also submitted a patch, which has since been
merged. However, the maintainers argued that since triggering
this vulnerability required arbitrary python execution, it could
not be considered as a security risk.
Case Study: Unchecked RetVal in Csound. As described
in the example in Section 3.2, a usual pattern of dropping priv-
ileges in a binary with SETUID capability involves invoking
getuid to get the actual user ID of the user who started the
process. This is immediately followed by invoking setuid to
change the user ID of the process to the real user ID from the
effective user ID. However, when the software does not check
to see if setuid dropped the privileges successfully, it might
lead to privilege escalation.

We found multiple instances of such behaviour in Csound.
The relevant source code snippet is shown in Listing 5. The
the setuid is invoked inside the function set_rt_priority to drop
root privileges. After this function set_rt_priority returns, the
program then creats a log file that is then written to.

In this case, if the setuid fails, the log file that would be left
on the machine would be owned by root which is a dangerous
situation. Since, disregarding the return values of important
API functions like setuid can lead to security vulnerabilities,
compilers often generate warnings to report a situation where
the return value of such an API is unused. However, in the
snippet shown in Listing 5, the ignore_value macro is used to
suppress a compiler generated warning. We have submitted a
patch for this vulnerability and it has now been fixed.
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